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Abstract

A method for the optimization of structures to satisfy flutter velocity

constraints is presented along with a method for determining the flutter

velocity. The material presented represents a summary of Ref. 1 through 5

which are a direct result of the research effort of this grant. A method

for the optimization of structures to satisfy divergence velocity constraints

is presented in Appendix B.
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I. Optimization of Structures to Satisfy a Flutter Constraint

In this section of the report a mathematical method for minimizing

the structural mass of a lifting surface which is subject to a specified

flutter velocity constraint will be presented. It will be assumed that

structural parameters (cross-sectional areas, plate thicknesses, diameters

squared, etc.) are selected in such a way that the total structural mass

is a linear function of these parameters. The optimization procedure

which will be presented is independent of the aerodynamic theory which

might be selected.
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1.1 Velocity Gradient Search

This routine is employed when it is desired to increase the flutter

velocity. The flutter velocity normal derivative is calculated at a point

and parameters are varied so that a step is taken in the direction of

maximum increase in velocity. The desired flutter velocity is reached

after several successive steps along a gradient curve in an iterative

fashion as from point A to point B in Fig. 1.

The desired change in a design parameter during a velocity gradient

search may be computed from the following relation which was derived in

Ref. 1.:

n
AP. = V . (V*-V)/~ V2 . (1)

S ,I j=l 'J

where V* is the desired flutter velocity V is the current flutter

velocity, V . = aV/aP. and n is the total number of design parameters.

New values of the design parameters may be determined from the

relation

P. = P. + AP. (2)U I I

A new value of the reduced frequency k may be estimated from the

relation

n
k* = k + E k . AP. (3)

i=l '

This new value of k may be used as a starting value for search for the

true flutter velocity in a procedure for determining the flutter velocity.
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1.2 Projected Gradient Velocity Search

This routine is employed to find a relative maximum of the flutter

velocity while the total mass of the structure is held constant. The

parameters are varied in such a way that the search proceeds tangent to

a constant mass hyperplane in the direction of the maximum rate of

increase of the flutter velocity until a relative maximum is found which

lies within the bounds of the parameter constraints as from B to C in

Fig. 1. In Ref. 1 a procedure for searching for a maximum flutter

velocity along a constant mass hyperplane was presented; however, the

step size in the search was selected by trial, this resulted in a slow

convergence to the maximum flutter velocity for that hyperplane. In

Ref. 2 equations were presented for approximating the step size for

moving from point B to C in Fig. 1. These reiations are as follows:

n dP. n n dP. dP
S=- V z v h _ (4)

,j ds j=1 h= ,jh ds ds

where

dP.
.I = (V . + l m .)/20 (5)

ds ,j ,j. o

n n 2
S= - m . V ./ m (6)
1 j=l 'J h=l ,h

Sn V2 1/2
S 20 = (V + V. .. ....... .((7)

S j=1 ,J ,J ,J

and where m is the total mass of the structure. New parameters may be

computed from the relation

P* = P. + (dP./ds)S (8)
J J J
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1.3 Mass Gradient Search

This routine is employed whenever it is desired to reduce the flutter

velocity as from point C to point D in Fig. 1. A step is taken in the

direction of the greatest rate of decrease in the structural mass and the

process is repeated until the flutter velocity is less than or approximately

equal to the desired value.

The changes in the design parameters are computed from the following

equation which was derived in Ref. 1:

n
AP. = m . (V*-V)/ z V m (9)

The above three search procedures were applied to the design of a box

beam in Ref. I and 2. The results of this application indicate that

practical application of the above method to a real aircraft structure is

feasible.
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1.4 Partial Derivatives of the Flutter Velocity

Two of the search procedures which were previously described require

the partial derivatives of the flutter velocity with respect to the design

parameters. These partial derivatives may be found by considering the

equations of oscillation of an aircraft structure which is in a state of

neutral stability, i.e.

[K - X. (M+A)]U. 0 (10)

where K, M and A are the stiffness matrix, mass matrix and aerodynamic

force matrix, respectively. U. is an eigenvector corresponding to thea

eigenvalue X.. The aerodynamic force matrix A is a function of the air

density, Mach number and reduced frequency k.

Expressions for the first partial derivatives of the eigenvalues with

respect to structural design parameters were derived in Ref. 1. These

derivatives may be expressed in the form

x. = VT

ij i [Kj - X (M j + A j)] Ui  (ll)

where the letter in the subscript which follows the comma indicates a

partial derivative with respect to a design parameter, i.e.

x. . = aX./P.
IJ I J

The superscript T in equation (2) indicates the transpose of the left-

hand eigenvector V where

V.T[K- X.(M+A)] = 0 (12)
I I
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In the design process presented here it is convenient to constrain

the derivatives of .X. and k such that they are pure real. Then

velocity gradient search and the projected gradient velocity search will

move from one neutral stable state to another neutral stable state for

the mode which determines the flutter velocity. The derivatives for

this case are given in Ref. I and Ref. 2 and are repeated here.

X.i j = R - R AI/A (13)
iij 1 2 1 2

k j = - A/A 2  (14)

where.

R1  1  m I ,j ) ,j i+A I=V [K (15)

T A

R + A I = - V. UT A(16)
2 2 m i ~ k (6)

I = (.1)

m

The first partial derivative of the flutter velocity Vf is given

by the relation

V. - bw. k ./k 2 + bA. ./2kw. (17)
,) I jj I

where
1/2

I I

The second derivatives of the eigenvalues of equation (10) and the

.reduced -frequency- when -the derivatives are constrained to be pure real are

derived in Ref. 2 and may be expressed in the forms

ijh = R - R2 A 3/A (18)
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and k,jh =- A /A2  (19)

where T F
R + A I =V. K. - A.. (M + A)

3 3 m i,j ,h

X- ih (M j + A .) - X. [M jh+ (02A/ A )/k .k ] U. (20)

T T
+V. F U. +V F U

i,j i,h i i,h i,j

@A
A . = 7k k. (21)

A = k k + k (22)
,jh k2  ,j ,h + k ,jh

VT F. U Vi 0K V (M+A VT [K h-X.(M h+A h)]UU /(x i -x1) (23)
jI ,J h It , (,J 1 ,,h hh(23)

The second derivatives of the flutter velocity with respect to the

design parameters may be found by differentiating equation (17) with

respect to a design parameter, then

Vfjh = (b/2kwi) (i,jh ij X. . ,h /(2Xi)

-(. ijk,h + hih k ,j)/k
i h i,h

+(2k .k /k - k . )2 A./k] (24)
,j ,h ,jh

Alternate methods for finding the unconstrained derivatives of eigen-

values and eigenvectors were developed in Ref. 4 and 5. The "algebraic

method" of Ref. 5 may be used to find the first derivatives of the eigen-

values and eigenvector of the non-self-adjoint system of eigenequation

[K - A. (M+A)]U. = 0 (10)
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with respect to an independent variable P. by solving the set linear
J

equations

C = DU. (25)

where
T0

c = ---------- (26)
K -(M+A) i -(M+A)U.

and

SD = (27)
.(Mj + A j) - K j

and where it is required that UTU. = i.
I I

The second partial derivatives of the eigenvalues and eigenvectors

may be found by differentiating equation (25) with respect to the inde-

pendent parameter P , then

0  h (28)

If X.ij , U. j and U. are evaluated from equation (25) then

Uijh and X.,jh may be found by solving equation (28).

The above process may be continued for any number of higher order

derivatives.

It should be noted that the derivatives found by using the algebraic

method are not constrained, and they may not be substituted into

equations (17) and (24) to find the first and second derivatives of the

flutter velocity; however if the reduced frequency is held constant in

-8-



equations (25) through (28) and in the relations

Vf = b w./k = b /k (29)

then
Vfj = b X. ./2kw (30)

and

Vf,jh b ,jh/2k - b A. . /4kw3  (31),jh I ,j ,h

The derivatives of Vf from equation (30) and (31) will (in the

general case) be complex.
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2. An Automated Procedure for Determining the Flutter Velocity

Efficient optimal design programs for aircraft structures which are

subject to constraints on the flutter velocity require a rapid and

automatic method for evaluating the flutter velocity. In Ref. 3 a

computationally efficient method for finding the flutter velocity is

presented. The method utilizes derivatives of the eigenvalues with

respect to the reduced frequency in a curve fitting scheme for finding

the critical roots of the flutter equation. The method is unaffected

by the coalescence of any of the eigenvalues.

In Ref. 3 the derivatives of the eigenvalues were found by use of

the methods of Ref. I and 2; however, the "algebraic" method of Ref. 5

could be more efficiently employed to find these derivatives.
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V Flutter Velocity

M Total Mass
V3  MI < M2 < M3

M

Flutter Velocity Constraint

Side Constraints

-- P.
Figure 1
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ABSTRACT

Analytical expression for evaluating the partial derivatives of

the torsional divergence velocity of an aircraft structure with respect

to design variables is derived. An optimization procedure to satisfy

.a specified divergence velocity is illustrated,using gradient methods

and finite-element representation, for a box beam with the lower and

upper values specified for the design variables. It is shown that

there is a possibility of serious designer judgement error due to

inefficient performance of optimization methods against multiple

constraints. A "dimension reduction technique" is proposed to help

in such situations.
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1. INTRODUCTION

In the recent past, there have been several publications dealing

with optimization with respect to a static aeroelastic .constraint on

the torsional divergence velocity 1,2,3,4]*. Mcintosh and Eastep (2]

presented a calculus of variations formulation for a tapered cantilevered

wing with torsional stiffness dominated by contributions from a thin

outer skin. Mcintosh and Weisshhaar [3], and Armand and Vitte [4] used

transition-matrix approach of optimal control theory. Mcintosh and

Weisshhaar [3] concluded that early optimism concerning the use of

transition-matrix approach must be tempered somewhat, and it may in

the long run prove most useful to adopt more sophisticated steepest

ascent or gradient methods. Further, it appears that even for the

gradient methods to be computationally attractive for practical problems,

without excessive penalty in the computer time used to arrive at an

optimum solution, closed form analytical expressions should be derived

for the partial derivatives involved so that their computation does not

involve individual perturbation of each design variable and corresponding

evaluation of the objective function. This would be a very significant

consideration for problems with a large number of design variables,

and/or where evaluation of the objective function is expensive in terms

of computer time. In the present paper, the authors' aim is, therefore,

to deve.q-p a.closed ,f o*r ex .ss ion for. the partial deri vatives pf .

torsional divergence velocity with respect to design variables, and to

present a practical method for optimum weight design of an aircraft wing

structure subject to torsional divergence velocity constraint.

Numbers in square brackets indicate references listed at the
end of paper.
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II. PARTIAL DERIVATIVES OF DIVERGENCE VELOCITY

The governing characteristic equation for torsional divergence

of an aircraft wing structure in a static neutral state-can be

expressed as, (see Ref. (5))

([K] X h[A) {U} = 0 (1)

where

[K] = torsional stiffness matrix, function of design
variables P., symmetric matrix.

[A] = torsional air-force matrix, function of air
density and wing geometry, constant and real.

S= eigenvalue, equal to the divergence velocity
squared.

{U} = angular displacement of the wing

To define an associated row vector.{V} of the eigenvector. {U},

consider

([K] - X[A]') {V} = 0 (2a)

Taking the transpose of equation (2a) and using the symmetry

property of [K] yields

{V}'([K] - X[A]) = 0 (2)

Differentiation of the characteristic equation (1) with respect

to a design variable P. yields
I

K]a[K] -- x [ a) -.0.)
I II

Premultiplying equation (3) by {V}' and simplifying by substituting

equation (2), results in the equation

{v}' {U}aP.

ap {V)'[A] {U}



A similar expression can be derived using the flexibility

matrix instead of the stiffness matrix, in which case the characteristic

equation is given by

([CI[A] - 1/A[I]) {U)= 0 (5)

where [C] is the inverse of [K].

From equation (5) it can be shown that

x2 {v} a ))[A] {U} (6)

ai {V}"{U}

The partial derivatives of the divergence velocity can be

quickly computed from either equation (4) or (6). The use of these

derivatives will be discussed in section ii.



III. OPTIMIZATIOII PROCEDURE

Two general approaches to optimization have e/volved thus far:

maximizing a certain eigenvalue for fixed mass, or minimizing the mass

for a fixed eigenvalue [2]. The authors use the first approach, which

is equivalent to projected gradient method with eigenvalue as the

objective function, in conjunction with gradient mass and gradient

velocity methods. This procedure is described.in detail in the

authors' earlier paper [6]. The optimum design with divergence

velocity constraint will be illustrated for a three bay box beam

.(See Figure 1) with twelve design variables having upper and lower

constraints.

The optimization program is independent of the formulation used

for the air-force matrix. However, significant simplification is

obtained when the air-force matrix [A] is symmetric, in which

case equation (4) is simplified to

{U} [ ] {U}aP.
ax I (7)
i {U}' [A] {U}

This simplification would not be achieved using the flexibility

matrix. Thus there is substantial computational advantage for the case

of symmetric air-force matrix, if the stiffness approach is used.

For the numerical example presented in this paper, a diagonal air-force

matrix was used [5].

Table 1 lists the results obtained from the optimization program

for the box-beam of Figure 1. Two sets of values for the design

S



variables were used as initial input to the optimization program.

The mass-optimization was subject to a torsional divergence velocity

constraint of 600 ft./sec. with upper and lower constraints specified

for all the 12 design variables. These constraints were same for
both the cases of initial design values.

For the case 1, an optimum design was very quickly arrived at
in two design cycles. A design cycle here defines a step taken in the
multi-dimensional space of design variables during an execution of
projected gradient, mass gradient or velocity gradient search; each
design cycle involves computation of stiffness matrix and evaluation

'of the eigenvalue problem in addition to computation of derivatives.

The final values for P2' P3 and P10 seem to be numerically same as
the corresponding initial values. Actually the final values are
slightly higher than the initial values, but due to a very small
numerical difference this is not apparent from the number of digits
listed in the table. Therefore, the optimum arrived at for case 1,
appears to be a free optimum rtThem dert9n pcrameies amYe tnod agai;-t a>

For the case 2, the lower constraints for PP P8 and P
7 P8 9slowed down the optimization procedure considerably, and it took 47

design cycles to reach a mass approximately 40% higher and a divergence
velocity approximately 0.45% higher than for the previous optimum attained.
This suggests the possibility of serious designer judgement error
due to inefficient performance of optimization methods against

multiple constraints. To circumvent this, the authors suggest the
use of "dimension reduction technique". The proposed technique would
monitor the partial derivatives of the relevant eigenvalue with respect
to the design parameters which are against the constraints, and from



these determine the design parameter which would tend to violate the

constraints if a step in the desired direction were taken. Such

parameters would be then held constant for the next step, thus

effectively reducing the dimension of the design parameter space

for this step. At the new point thus reached, a new design cycle

would begin and partial derivatives of the relevant eigenvalue

with respect to all the design variables would be computed, and

.the above process repeated. It is expected that such a technique

would reduce the number of design cycles required for problems

where constraints are encountered.



CONCLUSIONS

The closed form analytical expression derived for the partial

derivatives of divergence velocity with respect to a design

parameter is useful in the gradient type search procedures. The

example solution illustrates its use. It seems that where lower

constraints are specified for the design variables, a logical

initial point should preferably include applicable lower constraints.

This view is substantiated by authors experience that gradient

velocity procedure operating in the neighborhood of lower

-constraints is very fast and effective in increasing the velocity

to the desired value, since in increasing the velocity it would

usually tend to move away from the constraints. For the case where the

constraints slow down the gradient methods, the dimension reduction

technique may improve their performance. The authors hope to explore

the potential of this method in their future work.
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TABLE 1 Initial and Final Parameters with Constraints

Area of Logitudinals Front & Back Web Thickness Top & Bottom Web Thickness Rib Thickness Totali !Dvergence
(Sq. in.) (x 10-1 in.) (x 10 1 in.) (x 10-  in.) _ (Slugs (ft./sec).

Bay I Bay 2 Bay 3 Bay I Bay 2 Bay 3 Bay Bay 2 Bay 3 Bay I ay 2 Bay 3
P P2 P P P P P P P P Pi P22 3 4 5 6 7 8 9 10 11 12

0.0.3326 4.33264 0.33264 0.13332 0.13332 0.13332 0.o666 0.0.066 6 0666 666 66 666 66 0.0666 0.92 555.23

_ _, 2.000 2.000 2.000 0.800 0.800 0.800 0.400 0.400 0.400 0.400 0.400 0.400 5.54 1370.41

0 0.33264 0.33264 0.332641 0.13332. 0.13332 0.13332 0.0666 0.0666 0.0666 0.0666 0.0666 0.0666 0.2 . 555.23

8.oc64 8.0064 8.0064 3.204 3.204 3.204 1.56 1.596 1.596 1.596 1.596 1.596 22.15 2730.71,o

S 0.33336 0.33264 0.33264 0.1362 0.134640 0.133368 0.081228 0.082284 0.072672 0.0666 0.066756 0.067008 0.95 59 555

ra 0.3865 0.3865 0.3865 0.35184 0.35184 0.3184 0.0.066 6 0666 0.0666 0.3066 0.3066 0.3066 1.30 602.65

* Beyond the range of aerodynamic theory used.

a) Number of design cycles: Case 1 - 2

Case 2 - 47
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